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We study numerically the magnetotransport of the two-dimensional Sinai billiard in a uniform magnetic
field. We argue that one must include impurity scattering in order to have a well-posed physical problem. Still,
there is a window for the scattering time where the transport is dominated by the deterministic dynamics. We
investigate the dynamical structure of phase space, peaks in the magnetoresistance and conductance, and
diffuse instead of specular reflection.@S1063-651X~96!07906-8#

PACS number~s!: 05.45.1b, 05.60.1w

I. INTRODUCTION

The Sinai billiard is presumably the simpleststrictly me-
chanicalsystem that has a finite, nonzero Ohmic resistance:
One starts with a fundamental domain in the plane, which we
take as the unit squareD5@0,a#3@0,a#. InsideD we place
~a few! stictly convex and nonoverlapping scatterers. This
arrangement is repeated periodically over the full plane. A
mechanical point particle starts in the region outside the scat-
terers. The particle moves according to its velocity along a
straight line until it hits a scatterer, where it is elastically
reflected; i.e., at a collision the angle of incidence and of
reflection are equal. This dynamic is continuedad infinitum.
It is proved@1,2# ~with one proviso, which will be explained
below! that due to the many collisions the trajectory re-
sembles~in a statistical sense! a random walk. Typically the
position of the particle,x(t), will grow proportional toAt for
large t.

What may look like a theoretical toy model has in fact
been realized to a good approximation experimentally in the
form of a lattice of antidots@3–5#. This is a two-dimensional
electron film at a semiconductor interface on which geo-
metrical restrictions of the form described before are im-
posed, e.g., by lithographically structured electrodes. Within
good accuracy the dynamics of the electrons is strictly two
dimensional, independent, and classical, since the lattice
constant (a'2002500 nm! is much larger than the Fermi
wavelength ('50 nm!. Experimentally one measures the
magnetotransport, i.e., the magnetoresistance and Hall resis-
tance, in dependence on the magnetic field, which can be
easily varied.

The dynamical problem thus posed is the Sinai billiard in
a uniform external magnetic fieldB, perpendicular to the
plane. In fact, geometrically this is a very natural modifica-
tion. Rather than along a straight line, between two collisions
the particle moves now on a circle with radius
r c5m* v/eB and tangent to its velocity, wherem* denotes
the effective mass,e the charge, andv the speed of the
particle. Experimentally values down tor c /a!1 can be
reached.

We will take the antidot lattice as our guideline. However,
the true electrostatic antidot potential is not exactly a Sinai
scatterer and one should worry also about other imperfec-
tions. Our goal here isnot to optimize the classical descrip-
tion of a particular antidot probe. Rather we would like to
understand, within the framework of a simplified but definite
model system, how properties of the deterministic dynamics
are reflected in the magnetotransport.

In the Sinai billiard, even including other scattering
mechanisms to be explained below, there is no energy dissi-
pation. Therefore an external electric field would eventually
accelerate the particle and no steady current could be estab-
lished. This heating is only second order in the electric field,
but it forces us to define transport through linear response.
The Ohmic conductivity is then proportional to the diffusiv-
ity via an Einstein relation.

At this stage it may be useful to view the diffusive growth
of the positionx(t) in a slightly different way, still restricting
ourselves to the caseB50 . We consider the dynamics on
D with periodic boundary conditions, i.e., on the unit
torusT2 ~setting the lattice constanta51). The velocity of
the particle is denoted byv(t). By conservation of energy we
may normalize as uv(t)u51 and set v5(cosf,sinf).
Let L,T2 be the allowed position space with areauLu.
The phase space of the billiard is thenG5L3S1. It comes
with the invariant microcanonical measure
dm5uLu21dx1dx2df/2p. With respect tom, v(t) is a sta-
tionary stochastic process.v(t) is mixing and, in fact, enjoys
the much stronger ergodic property of positive Kolmogorov-
Sinai entropy@6#. Clearly, the position of the particle in the
plane is given by

x~ t !5x~0!1E
0

t

dsv~s!. ~1!

Diffusion for x(t) results from the chaotic dynamics of
v(t) on G. More specifically

1

At
E
0

t

dsv~s! ~2!

must satisfy the central limit theorem@note that^v(t)&50 ,
average with respect tom#. Its covariance is the diffusion
tensor
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Dab5
1

2E2`

`

dt^va~ t !vb~0!&, ~3!

a,b51,2. D is symmetric, but nondiagonal in general, the
diagonal being related to the mean square displacement as
^xa(t)

2&>2Daat for large t.
In parentheses we remark that the central limit theorem

doesnot follow abstractly from a positive Kolmogorov-Sinai
entropy. For example, as can be seen from~3!, a sufficiently
fast decay of̂ va(t)vb(0)& is needed. The proof of the cen-
tral limit theorem requires a uniformly bounded time be-
tween collisions@2#. This is the condition of finite horizon
because no unbroken trajectory reaches infinity. In that case
and for standard geometries such as a triangular lattice
^va(t)vb(0)& seems to decay exponentially~with oscilla-
tions! @7# and ^xa(t)

2& reaches its linear asymptotics after a
few ~5–10! collisions.

In the following we will consider the particular case of a
single circular scatterer per unit cell with radiusR,
0,R,a/2. Clearly, the time between collisions is un-
bounded.^va(t)vb(0)& decays as 1/t, ^xa(t)

2& grows as
t lnt, and strictly speakingDaa5` @8,9#. This infinity is the
result of an overidealization. In real systems scattering by
impurities may be rare, but is unavoidable. The most perfect
antidot samples have an impurity mean free path of the order
of 105 nm. In the Sinai billiard impurity scattering is intro-
duced simply by randomizing, at the current position, the
velocity anglef at Poisson distributed random times with
mean spacingt. v(t) is then no longer deterministic, but~3!
remains valid provided̂& is understood as double average,
i.e., with respect to the initial conditions and the impurity
scattering at random times. The diffusion matrix depends
now on t. Clearly, if t→0 any trace of the deterministic
dynamics is washed out andDab(t)>^v2&tdab . On the
other hand, for the square lattice,D(t)→` as t→`. We
argue here that there is a meaningfult window ~which has to
be determined!, whereD is dominated by the deterministic
dynamics, yet the long collisionless trajectories are sup-
pressed by impurity scattering.

After these preliminaries we turn to the problem of inter-
est, namely,BÞ0 . Antidot probes are maintained at Kelvin
temperatures. Therefore the electrons have a velocity distri-
bution uniform over the disk$vuuvu<vF% with vF the Fermi
velocity. Following standard linear response the magneto-
conductance is obtained as

sab5
e2m*

p\2 vF
2E

0

`

dt^va~ t !vb~0!&. ~4!

Here2e is the charge,m* the effective mass of the electron,
and, as before,̂ & the microcanonical average withuvu51 .
By stationarity^va(t)vb(0)&5^vb(2t)va(0)&. Thus

Dab5
p\2

e2m* vF
2

1

2
~sab1sba!. ~5!

In particular, the diagonal matrix elementssaa are deter-
mined by the mean square displacement of the diffusing par-
ticle. Unfortunately, the off-diagonal elements ofs cannot
be related to diffusion in a position which complicates a

qualitative understanding of their parameter dependence. For
B50 invariance under time reversal implies
^vb(2t)va(0)&5^vb(t)va(0)& and thus sab5(e2m* /
p\2)Dab , which is the Einstein relation for a classical gas
with T50 Fermi velocity distribution. In the case of a square
lattice, considered here, one has the additional reflection
symmetryx1°6x1 ,x2°7x2 ,B°2B. Together with time
reversal t°2t,B°2B, this implies ^va(t)vb(0)&
5(21)a1b^va(2t)vb(0)& for arbitrary B. Therefore
D115D22, D1250 , ands1252s21.

The resistance matrixr is the inverse ofs, explicitly
given by

r115
s11

s11s221s12s21
, r125

s12

s11s221s12s21
~6!

and correspondingly forr22,r21. Usually r11 is called the
magnetoresistance andr12 the Hall resistance.

For very smallB the trajectories between collisions are
almost straight and one may use perturbation techniques de-
veloped in@10# with the result that the properties atB50
persist. On the other hand, asB→`, the trajectories are
either closed circles or skip along a single scatterer~rosette
orbits!. The dynamics is then integrable. Thus for intermedi-
ate values we expect a mixed phase space. Its structure will
be discussed in detail in Sec. II. We only remark that for the
square lattice we will find orbits drifting to infinity. But in
contrast to the caseB50 , for a certainB range these orbits
form a set of positive measure.~4! is then ill defined. Also
restricting^& to some part of the phase space is ratherad hoc.
As argued above anda forteriori for BÞ0 , the correct
physical setting is to introduce scattering by impurities. The
derivation of~4! remains valid and yields a well-defineds
depending ont. As t→0 the conductance is completely
determined by impurity scattering. The problem of interest
and to be studied in Sec. III is the behavior ofs(t) for
reasonably large values oft. In particular we will have to
find out which piece of the deterministic dynamics domi-
natess(t).

In our paper we study only the square lattice with disk
scatterers~antidots!. The parameters are then~1! the external
magnetic fieldB, equivalently the gyration radiusr c /a, ~2!
the antidot radiusR/a, ~3! the impurity scattering mean free
pathl /a5uvut/a, equivalently the mean free timet, t5 l for
uvu51 . All three parameters are measured in units of the
lattice spacinga, which we set equal to 1. Typical experi-
mental values areR/a'1/6, r c /a'2, and l /a'10. The
transport coefficients of interest are the magnetoconductance
and Hall conductances11,s12 as given by~4! and the cor-
responding resistances of~6!.

Antidots have some intrinsic roughness from the litho-
graphic preparation process. We can model this through dif-
fuse scattering: when the particle hits an antidot it is specu-
larly reflected with probability p and diffusely with
probability 12p, 0<p<1 . This means that relative to the
normal the outgoing angleu is chosen at random according
to the distribution cosudu/2,2p/2<u<p/2, which just en-
sures that the microcanonical measurem is left invariant.
The influence of diffuse scattering on the transport properties
will be discussed in Sec. V.
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II. DYNAMIC STRUCTURE OF THE PHASE SPACE

In this section we study the deterministic dynamics setting
t5`. By definition the phase spaceG refers to a single unit
cell. Its various components are, however, more easily char-
acterized in the periodically repeated scheme of Fig. 1. For
r c,

1
22R the billiard is completely integrable. Orbits are ei-

ther circles around zero, circles around a single scatterer, or
rosettes skipping along a single scatterer; cf. Fig. 1. Forr c
sufficiently large the billiard is fully chaotic. For intermedi-
ate values ofr c the chaotic seaGc coexists with a regular
pieceG05G \ Gc , for which by definition the Lyapunov ex-
ponent vanishes.Gc seems to consist of one single compo-
nent with the exception of a set of tiny measure. Figure 2
gives the ‘‘phase’’ diagram in parameter space, indicating
where the system is integrable, mixed, and fully chaotic.

G0 splits into several dynamically distinct components.
First of all, there are collision-free circular orbits; cf. Fig. 1.
They encircle either zero, one, or several scatterers. There-
fore the latter are also called pinned orbits. In Fig. 2 we plot

the first few boundaries in parameter space, which limit re-
gions where 0-circles cease to exist, 1-circles start and cease
to exist, etc. These boundaries are determined by purely geo-
metric conditions. For larger c they form a fairly compli-
cated pattern, which is responsible for the rugged boundary
between the mixed and fully chaotic ‘‘phase,’’ where we
simply assume that the absence of circle orbits is equivalent
to fully chaotic dynamics. This is not evident and there could
be other regular orbits. However, if they exist at all, they
must have minute phase space volume.

A dynamically important information is the phase space
volume of all circle orbits, which is displayed in Fig. 3.
Clearly the 0-, 1-, 2-, and 4-circles dominate~for suitable
R), but also orbits encircling 3, 7, 9, 10, 14, 16, 21, . . .
scatterers have a distinguishable weight.

Circular orbits are marginally stable. There is a further set
of marginally stable orbits, namely, the rosette orbits; cf. Fig.
1. Their angle of incidence does not change under successive
collisions. Thus a typical rosette orbit is quasiperiodic and
not closed. Because of this precession there cannot be a set
of positive measure of rosette orbits that encircle other scat-
terers. Rosette orbits cease to exist forr c.0.5. However, for
small r c rosette orbits make up a substantial part ofG0 . We
note that in phase space the boundaries of rosette and circle
components are piecewise smooth, because they are deter-
mined geometrically.

Figure 4 is a Poincare´ plot, where we map from outgoing
to outgoing collision. We use the angle on the surface of the
scatterer,sP@0,2p#, and the angle of the velocity relative to
the normalu, uuu<p/2, as coordinates. Forr c50.4 we rec-

FIG. 1. Various orbits forR50.15

FIG. 2. Phase diagram in parameter space.(///) is completely
integrable, (\\\) is fully chaotic, and the remainder mixed dynam-
ics. (•••) are the boundaries of the 0-, 1-, 2-, and 4-circles.h

denotes the location of peaks inr11 for various values ofR; com-
pare Fig. 8.

FIG. 3. Phase space volume of all circle orbits for
R50.1, 0.167, 0.25, and 0.35 from top to bottom.

FIG. 4. Poincare´ sections for r c50.4, R50.15 ~left! and
r c50.51, R50.25 ~right!.
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ognize the rosette orbits withu>20.05p. Rosettelike seg-
ments of chaotic trajectories appear as lines with constant
u in the chaotic sea, whereas the circle orbits are hidden for
our choice of section. Also several elliptic islands of the
familiar structure are clearly visible. These are hard to clas-
sify systematically and we proceed via case study. An obvi-
ous example is Fig. 1~top! @11#, which corresponds to a
fixed point of the return map. From a linear stability analysis,
this fixed point is stable provided

U12
2 r c
R
cos arcsinS 1

2 r c
D U<1. ~7!

For example, forR50.25 the fixed point is stable for
0.5,r c,0.56. At the lower end the fixed point becomes
marginally stable and the elliptic island disappears. At the
upper end there is a pitchfork bifurcation to a stable period-2
orbit, which corresponds to a sequence of a long, a short, a
long, etc. ‘‘jumps’’ from scatterer to scatterer. Atr c50.57
the period-2 orbit becomes unstable and the island ceases to
exist. The phase space volume correponding to the island is
small, reaching a maximum of 0.008 in the interval
0.505<r c<0.525.

The orbits shown in Fig. 1~top! drift with a constant
velocity to infinity. For this reason we call them ‘‘drifting
orbits.’’ Encouraged by our example we look for other drift-
ing orbits constructed according to the same rule. We label
such fixed points by their Miller index, (1,0) in our example.
There is a (3,0) island existing only forR,0.11 with even
smaller phase space volume than the (1,0) island. It should
be noted that the linear stability is only a necessary condi-
tion. Given a stable fixed point, the orbit may interfere with
the row of scatterers in parallel and thus in fact not exist at
all, as for the (1,1) or the (2,0) island. A further example is
Fig. 1 ~diagonal!. This a stable period-2 orbit of the Poincare´
map, which alternates between (1,0) and (0,1). For
r c50.51 ~which is favored by the stability condition! we
determined numerically the measure of all drifting orbits.
They come into existence atR50.1, reach their maximal
phase space fraction of 0.015 atR>0.3, and then disappear
atR>0.38. We conclude that drifting orbits are dynamically
distinct. However, they exist only in a fairly small window
and even then have only small measure. Still, if we would
stick to the fully deterministic dynamics, according to~4!
they would eventually dominate the magnetotransport.

In the Poincare´ section, one also finds elliptic islands that
do not correspond to drifting orbits. An example is the closed
orbit in Fig. 1 ~top left!, a period-4 fixed point of the return
map from the small island in Fig. 4 forr c50.4. Also at
r c50.6, R50.25 there is a stable periodic orbit that skips
along nine scatterers before returning to its original phase.
Each of these regular islands exists only for a small param-
eter range and again their phase space volume is minute.

For the billiard atB50 the trajectories drifting straight to
infinity form a set of measure zero. Still chaotic trajectories
follow an exceptional trajectory for a long time leading to
the nonintegrable decay of^va(t)vb(0)&. For lack of a bet-
ter name we call such orbits ‘‘sticky.’’ A sticky orbit belongs
to the chaotic phase space but follows a nearby regular orbit
for a long time. Once a sticky orbit escapes the regular
neighborhood it is unlikely to return. A regular piece of

phase space has a sticky boundary if chaotic orbits close to
the boundary stick around for a long time. ForBÞ0 we also
expect sticky orbits. Of course, at this stage it is not clear
whether this phenomenon will be of any importance to the
magnetotransport.

For drifting orbits we expect a scenario that is well un-
derstood for smooth potentials@12–14#. An elliptic island is
surrounded by a self-similar hierarchy of cantori. The motion
can be modeled as a Markov process jumping from level to
level in that hierarchy. The waiting time increases exponen-
tially with the level, which leads then to slow motion and a
power law decay of correlations. When applying this sce-
nario to one island of drifting orbits, one has to recall that the
self-similar structure may be cut off at a certain level by
geometric constraints. We investigate the (1,0) drifting or-
bits at r c50.51. We determine the probability of the sticky
chaotic trajectories that follow the drifting orbits overn col-
lisions, i.e., for the (1,0) island ‘‘jump’’n times by the lat-
tice vector (1,0). ForR50.25 and 0.257 we seem to get an
algebraic decay approximately as 1/n for long times. On the
other hand, forR50.33 we have a quick drop and a loga-
rithmic plot confirms exponential decay. We interpret this
behavior as coming from a geometric constraint.

Circular and rosette orbits are not surrounded by chains of
islands and cantori, because they are geometrically con-
strained by a scatterer. Periodic rosette orbits encircling other
scatterers form a set of measure zero. Yet sticky chaotic
trajectories can follow the rosette over many collisions~cf.
Fig. 1! if we choose their angle of incidence just below that
of the rosette. Ifn collisions are followed, the phase space
volume scales as 1/n. To test this prediction we measured
the probability that an orbit collidesn times with the same
scatterer. Figure 5 confirms well our picture. For circle orbits
this effect has smaller phase space volume and we expect a
faster decay proportional to 1/n2. Circle orbits seem to be
‘‘less sticky’’ than rosettes.

The degree of mixing of the chaotic componentGc of
phase space is quantitatively characterized by the Lyapunov
exponent, which we plot in Fig. 6 for the continuous time
dynamics. In the fully chaotic ‘‘phase’’ we see a weak,
monotonic increase. If a regular component is coexisting, we
have pronounced oscillations. Somewhat to our surprise the
maxima are well correlated to the occurrence of circle orbits.

FIG. 5. ~a! Probability ofn successive (1,0) jumps for a chaotic
trajectory, R50.25 ~upper curve!, R50.28 ~middle curve!, and
R50.36~lowest dots!, r c50.51. ~b! probability of collidingn times
with the same scatterer for a chaotic trajectory,R50.1 ~lower
curve! andR50.05 ~upper curve!, r c50.65.
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III. IMPURITY SCATTERING

As argued in the Introduction, the physically meaningful
definition of the magnetotransport is given by

sab5E
0

`

dtCab
t ~ t !. ~8!

To simplify we normalized here the prefactor to one and, for
the purpose of this section only, we indicate explicitly the
t dependence.Cab

t (t)5^va(t)vb(0)& is the ~stationary! ve-
locity autocorrelation including impurity scattering with
mean free timet. The deterministic correlation is denoted by
Cab(t)5 limt→`Cab

t (t). In antidot probest ranges from 5
to 100 in our units.

If at each impurity scattering we would not only random-
ize the velocity but also the position over the current unit
cell, then the so obtained velocity autocorrelation equals
e2t/tCab(t) becausê v&50 immediately after the first im-
purity scattering. For the more physical impurity scattering
adopted here we still expect

Cab
t ~ t !>e2t/tCab~ t ! ~9!

to be a reasonable approximation over the parameter range of
interest @15,16#, however, still conditional to a numerical
check. As explained in Sec. II the phase space decomposes
asGcøGdøG r , Gd the drifting orbits,G r the circle, rosette,
and nondrifting regular orbits, with probabilitymc ,md ,m r ,
respectively~some of which could vanish!. Then obviously

Cab~ t !5mcCab
~c!~ t !1mdCab

~d!~ t !1m rCab
~r ! ~ t !, ~10!

whereCab
(z) (t) is the deterministic velocity autocorrelation

over the normalizedz component ofG. We combine now
~10! and the approximation~9! to discusss(t).

If t is sufficiently large, so thate2t/t decays more slowly
thanCab

(c)(t), then

E
0

`

dte2t/tCab
~c!~ t !>E

0

`

dtCab
~c!~ t ![Sab . ~11!

In fact the> is a little bit delicate. Presumably, because of
sticky orbits,Cab

(c)(t) has a slow decay, similarly as in the
known caseB50 . Our numerical procedure causes an ef-
fective numerical cutoff int and we do not see contributions
from such a slow decay. Thus we expect that over the range
5<t<t max ~11! is essentiallyt independent and determined
by the chaotic dynamics. Fort.t max the slow decay would
become significant.t max seems to be so large that it cannot
be accessed by our numerics. Note that for larger c there are
no collisionless trajectories running to infinity which guaran-
tees a finite horizon and a well-defined transport even with-
out impurity scattering.

For the drifting orbitsCaa
(d)(t)5(^va&d)

2 as t→`, where
^va&d is the average drift velocity along thea axis. Together
with ~9! this yields the contribution

md~^va&d!
2t ~12!

to s(t). md is always small. Even if we adjustmd to its
maximum we still have to maket>100 in order to obtain a
significant contribution. Therefore in the following we ne-
glect the contribution~12!. Still, providedmdÞ0 , as t is
increased,s(t) will be dominated by~12! rather than by a
possibly slow decay in~11!.

The dominant contribution to the third pieceCab
(r ) (t) is

from circle orbits, oscillating with the cyclotron frequency
vc51/r c . Thus

E
0

`

dte2t/tCab
~r ! ~ t !>sab

D , ~13!

which by definition is the Drude magnetoconductance

s11
D 5

t

11~vct!2
, s12

D 5
vct

2

11~vct!2
. ~14!

For the diagonal matrix elementss11
D !S11 and thus

s11>mcS11 ~15!

while for the Hall conductance we obtain

s12>mcS121~12mc!s12
D . ~16!

Figure 7 shows a comparison between numerically deter-
mined values ofsab(t) for two different values fort and
the approximations~15!, ~16!. The accordance is indeed very
good, even for fairly small values oft. We conclude that
magnetotransport is dominated by the chaotic dynamics over
the whole physically accessible range 5<t<100 . In the
following section we sett510 with the understanding that
except for finer details we observe indeed the deterministic
dynamics as given through~15!, ~16!.

IV. MAGNETOTRANSPORT

In Fig. 8 we show the magnetoresistancer11, as deter-
mined by ~6! and ~8! with t510 , as a function ofr c for
various values ofR. Such pronounced peaks have also been
observed experimentally@4,17–19# and in numerical simula-
tions with a smooth scatterer potential@15,16#.

A first guess might be thatr11 reflects the variation in the

FIG. 6. Lyapunov exponent forR50.1 (•••), 0.167 ~–!, and
0.25 (22). Vertical lines indicate the location of maximal phase
space volume of circle orbits labeled the number of encircled scat-
terers.
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chaotic phase space volumemc . However, using~15!, ~16!
together with the numerically determinedmc from Fig. 3 we
find that the resulting variation inr11 is a factor 4–10, in
some cases even 100, too small. Thus we must observe
changesSab , which is the integrated velocity autocorrela-
tion of the chaotic phase space; cf.~11!.

To systematize we indicate the location of the peaks in
r11 by boxes in Fig. 2. They fill all of the mixed phase. In the
integrable phase one has Drude behavior, in the chaotic
phase the conductances approach their values forB50; i.e.,
s11 increases ands12 decreases withr c . The location of the
peaks inr11 changes very little withR. Each column of
peaks occurs at thoser c where the orbits encircling a certain
fixed number of antidots have maximal phase space volume.
Peaks can be labeled with a definiten circle. This works
even when the associated phase space volume is very small,
such as, e.g., the 7-circle peak.

In view of ~6! we would expect that a peak inr11 is
correlated with either a maximum ins11 ~see Fig. 9! or a
minimum ins12, or both. To test which we show in Fig. 10
an enlargement forR50.16. s12 has indeed a minimum at
n51-, 2-, and 4- peaks.s11 has a maximum at the 1-peak,
but the maximum at the 2-peak is somewhat shifted. This

small shift in the extremum is actually a fairly frequent prop-
erty for boths11 ands12. At the 4-peaks11 has a structure-
less increase. For the data we analyzed this is an exception.
We conclude that at least roughly there is the expected cor-
relation, although the minima ins12 and the maxima in
s11 are much less pronounced than the peaks inr11.

It has been argued@15# that the peaks inr11 are due to
sticky chaotic trajectories following circle orbits. This
would, however, result in a minimum, rather than a maxi-
mum, ofs11 and such an explanation is not applicable to our
model. Sticky behavior of chaotic trajectories is not dis-
tinctly correlated with circle orbits, but it is also affected by
rosettes, cf. Sec. II. Since the structure inr11 is so well
linked with the occurrence ofn-circle orbits, we tried to
make a more quantitative connection withSab . The various
tests were not conclusive and, in our opinion, it is not justi-
fied to make a particular class of dynamical trajectories re-
sponsible for the peaks inr11.

V. DIFFUSE SCATTERING AT EDGES

The edges of real antidots are not completely smooth. The
microscopic roughness causes trajectories to be scattered dif-
fusely rather than specularly. In quantum wires, significant
modifications of the magnetoresistance are known to be
caused by the diffuse scattering at edges@20#. It can be mod-
eled by the single parameterp assuming that the trajectory
gets scattered diffusely with probabilityp upon hitting the
scatterer. The distribution of the angle of reflectionu relative

FIG. 7. Conductance under the full dynamics including impurity
scattering witht540 (22), t510 (•••), and in the approxima-
tion of Eqs.~15! and ~16! ~—!, R50.167.

FIG. 8. Magnetoresistance forR50.1 (•••), 0.167 ~—!, and
0.25(22).

FIG. 9. Magnetoconductance forR50.1 (•••), 0.167 ~—!,
0.25 (22), and 0.35 (2•2•).

FIG. 10. Magnetoresistancer11 ~—! and magnetoconductance
s11 (22), s12 (•••) for R50.167.
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to the normal equals cosudu/2, uuu<p/2, as required by the
invariance under the deterministic dynamics. Experimentally
p varies between 0.05 and 0.5 depending on the technique
used for creating the potential wells. Here we will use the
diffuse scattering mechanism to examine the dynamical ori-
gin of some of the peaks insaa andraa @21#.

Circle orbits do not hit a scatterer and are therefore not
affected by diffuse scattering. Sticky chaotic trajectories fol-
lowing either drifting orbits or circle and rosette orbits are
interrupted by diffuse scattering. The change in transport is,
however, quite different in both cases: The contribution of
drifting segments to the conductance is proportional to their
length. Since the window in the angleu ensuring a drifting
orbit is generally very small, the length of drifting segments
in chaotic orbits will be reduced upon diffuse reflection. As a
consequence strong diffuse scattering will suppress those
features insaa andraa that are due to drifting orbits. On the
other hand for trajectories following circle and rosette orbits
not the length of the segments but only the total fraction of
such trajectories, e.g., the return probability to a scatterer
after one collision, is important. This is not changed by dif-
fuse scattering and thus the features due to circle and rosette
orbits will hardly be affected.

To distinguish diffuse scattering from impurity scattering
we have to choose a mean free timet much larger than the
average time between collisions with scatterers. Figure 11
comparess11 for the dynamics including diffuse reflection
with impurity scattering. The curves are very similar and
most peaks remain nearly unchanged. Diffuse scattering es-
sentially corresponds to a reduction int. Only the peak at
r c50.55 forR50.25, where we had found the largest island
of drifting orbits, is strongly suppressed.

In Fig. 12 we plotr11 for both cases. The magnetoresis-

tance modulations remain nearly unaffected by the diffuse
scattering, and are only smoothed out insignificantly. We can
conclude that drifting orbits are of no importance for the
peak structure inr11.

VI. CONCLUSIONS

We investigated the two-dimensional Sinai billiard with
circular scatterers~antidots! on a square lattice and with a
uniform external magnetic field. Our numerical studies are
considerably more extensive and more systematic than pre-
vious work. Of course, we exploit here that the deterministic
dynamics is computationally fast. Magnetotransport is stud-
ied strictly within linear response theory. There isno exter-
nal electric field acting on the particle. For example, orbits
encircling either zero~unpinned! or one scatterer~pinned!
make exactly the same contribution to the magnetotransport,
because they appear on the same footing in the velocity au-
tocorrelation. Physically, magnetotransport is a well-posed
problem only if one includes impurity scattering~with mean
free timet).

Already the very first papers on the subject tried to ex-
plain the peaks in the magnetoresistance through chaos in the
classical dynamics. This hypothesis has never been tested
quantitatively before. Here we demonstrate that there is a
reasonably widet window, where on one side the chaotic
component of the deterministic dynamics dominates@cf. Eqs.
~15!, ~16! together with Fig. 7#, and on the other hand drift-
ing and sticky orbits are suppressed. We also include diffuse
scattering from antidots, which allows one to access the con-
tribution of drifting orbits to the magnetotransport.

We confirm the pronounced peaks in the resistance as
linked to pinned circle orbits. In fact the peaks cover that
part of parameter space where the classical dynamics has a
mixed phase space. On the other hand, it does not seem to be
possible to make one definite class of trajectories responsible
for the resistance peaks. We exclude, however, that the drift-
ing and circle orbits make any significant contribution to the
magnetotransport. Of course, this does not exclude possible
indirect contributions through nearby sticky orbits.

APPENDIX: NUMERICS

Numerically we solve the deterministic dynamics by map-
ping from collision to collision. Due to the exponential sepa-
ration of close trajectories according to the Lyapunov expo-
nent~cf. Fig. 6!, trajectories can be followed only for 10–20
collisions, limited by the error of initial conditions in double
precision. For details of the numerical determination of
Lyapunov exponents we refer to@22#. Conductances are cal-
culated by time integrating the velocity autocorrelation
^va(t)vb(0)&, diagonal conductances additionally by a lin-
ear fit of the mean square displacement^xa(t)

2&. Correla-
tions over the chaotic phase spaceGc are obtained from an
average over 105 independent segments of one long ergodic
trajectory. Velocity autocorrelations typically decay with os-
cillations within a few~5–10! mean collision times, giving
an almost perfect linear growth of the mean square displace-
ment. However, for smallR<0.1 andr c<1 , in the case of
substantial rosette contributions, a slower algebraic decay is
visible, requiring segments of length up to 50 collisions. Nu-

FIG. 11. Conductance with~—! and without (•••) diffuse scat-
tering for p50.5, R50.167~left! andR50.25 ~right!, t540 .

FIG. 12. Resistance with~—! and without (•••) diffuse scatter-
ing for p50.5, R50.167~left! andR50.25 ~right!, t540 .
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merical errors for the integration are about 1–2 %, maximal
5%, as caused by the statistical fluctuations for larget. Er-
rors in the least square fit are typically one order of magni-
tude smaller. Both values forsaa determined either from
time integration or from linear fit agree within their errors.

For impurity scattering we use the deterministic dynamics
between the randomly distributed scattering events. Scatter-
ing times and angles are taken from a random number gen-
erator of the NAG Fortran Library based on a multiplicative

congruential method. Again correlations are obtained as an
average over 105 segments from one trajectory covering all
of the phase space. For a mostly chaotic phase space corre-
lations behave as in the deterministic dynamics. In the case
of substantial oscillating contributions by circle orbits the
velocity autocorrelations have to be determined up to a few
mean free timest, e.g.,t'3t. The data in Figs. 7–12 con-
sist of discrete points withDr c50.025. All computations
were carried through on a hp workstation 715/64.
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