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Magnetotransport of the Sinai billiard
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We study numerically the magnetotransport of the two-dimensional Sinai billiard in a uniform magnetic
field. We argue that one must include impurity scattering in order to have a well-posed physical problem. Still,
there is a window for the scattering time where the transport is dominated by the deterministic dynamics. We
investigate the dynamical structure of phase space, peaks in the magnetoresistance and conductance, and
diffuse instead of specular reflectidis1063-651X96)07906-§

PACS numbd(ps): 05.45+b, 05.60+w

I. INTRODUCTION We will take the antidot lattice as our guideline. However,
the true electrostatic antidot potential is not exactly a Sinai
The Sinai billiard is presumably the simplestictly me-  scatterer and one should worry also about other imperfec-
chanical system that has a finite, nonzero Ohmic resistancetions. Our goal here igot to optimize the classical descrip-
One starts with a fundamental domain in the plane, which wéion of a particular antidot probe. Rather we would like to
take as the unit squa®=[0,a]x[0a]. InsideD we place understand, within the framgwork of a simplifje_d put defini'ge
(a few) stictly convex and nonoverlapping scatterers. Thismodel system, how properties of the deterministic dynamics
arrangement is repeated periodically over the full plane. A2re reflected in the magnetotransport. _
mechanical point particle starts in the region outside the scat- " the Sinai billiard, even including other scattering

terers. The particle moves according to its velocity along a{ne_chanlsms to be explained below,_ th_ere is no energy dissi-
straight line until it hits a scatterer, where it is elastically pation. Therefore an external electric field would eventually

reflected; i.e., at a collision the angle of incidence and ofe}ccelerate_ the partic_le and no steady current . pe gstab—
reflection’ are,equal This dynamic is continulinfinitum Ilshgd. This heating is .onIy second order in th_e electric field,

. . X ) . ) but it forces us to define transport through linear response.
Itis proved[1,2] (with one proviso, \.Nh'Ch will be e_xplamed The Ohmic conductivity is then proportional to the diffusiv-
below) that due to the many collisions the trajectory re-

. o : ity via an Einstein relation.
sembleg(in a statistical senge random walk. Typically the At this stage it may be useful to view the diffusive growth

position of the particlex(t), will grow proportional toyt for  of the positiorx(t) in a slightly different way, still restricting
larget. ourselves to the cadg=0. We consider the dynamics on

What may look like a theoretical toy model has in fact p with periodic boundary conditions, i.e., on the unit
been realized to a good approximation experimentally in theéorus T? (setting the lattice constamt=1). The velocity of
form of a lattice of antidot$3—5]. This is a two-dimensional the particle is denoted by(t). By conservation of energy we
electron film at a semiconductor interface on which geo-may normalize as|v(t)|]=1 and set v=(cosp,sing).
metrical restrictions of the form described before are im-Let ACT? be the allowed position space with arga|.
posed, e.g., by lithographically structured electrodes. WithirfThe phase space of the billiard is thErs A X St. It comes
good accuracy the dynamics of the electrons is strictly twowith the invariant microcanonical measure
dimensional, independent, and classical, since the latticeu=|A| tdx,dx,d¢/27. With respect tou, v(t) is a sta-
constant §~200-500 nm is much larger than the Fermi tionary stochastic procesg(t) is mixing and, in fact, enjoys
wavelength 50 nm. Experimentally one measures the the much stronger ergodic property of positive Kolmogorov-
magnetotransport, i.e., the magnetoresistance and Hall resiSinai entropy[6]. Clearly, the position of the particle in the
tance, in dependence on the magnetic field, which can bplane is given by
easily varied.

The dynamical problem thus posed is the Sinai billiard in t
a uniform external magnetic fiel@, perpendicular to the x(t)=x(0)+f0dw(s). @
plane. In fact, geometrically this is a very natural modifica-
tion. Rather than along a straight line, between two collision
the particle moves now on a circle with radius
r.=m*v/eB and tangent to its velocity, whera* denotes
the effective masse the charge, and the speed of the

Diffusion for x(t) results from the chaotic dynamics of
v(t) onT'. More specifically

. . t
particle. Experimentally values down tq./a<1 can be iJ dsv(s) 2
reached. Jtlo
must satisfy the central limit theoreote that(v(t))=0,
“Electronic address: fliesser@stat.physik.uni-muenchen.de average with respect tp]. Its covariance is the diffusion
TElectronic address: spohn@stat.physik.uni-muenchen.de tensor
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1 (= qualitative understanding of their parameter dependence. For
Daﬁ’zzf dt(v o(t)v 4(0)), (3 B=0 invariance under time reversal implies
o (Va(—1)va(0))=(va(t)v4(0)) and thus o,z=(e’m*/
wﬁZ)Daﬁ, which is the Einstein relation for a classical gas
jth T=0 Fermi velocity distribution. In the case of a square
attice, considered here, one has the additional reflection
peymmetryx;— * Xy , Xo+> FX,,B——B. Together with time
reversal t——t,B—~—B, this implies (v,(t)vz(0))
=(—1)“+ﬁ<va(—t)vﬁ(0)) for arbitrary B. Therefore

a,B=1,2. D is symmetric, but nondiagonal in general, the
diagonal being related to the mean square displacement
(Xo(1)2)=2D ,,t for larget.

In parentheses we remark that the central limit theore
doesnot follow abstractly from a positive Kolmogorov-Sinai
entropy. For example, as can be seen fi@mn a sufficiently B - B
fast decay ofv ,(t)v5(0)) is needed. The proof of the cen- D11=D2, D=0, andoy,=— o0y, .
tral limit theorem requires a uniformly bounded time be- . The resistance matrip is the inverse ofo, explicitly
tween collisiong2]. This is the condition of finite horizon given by
because no unbroken trajectory reaches infinity. In that case
and for standard geometries such as a triangular lattice B 11 B 012
(v.(t)vp(0)) seems to decay exponentiallyith oscilla- P G Gt 010091 P2 G110 gt 019001
tions) [7] and(x,(t)?) reaches its linear asymptotics after a
few (5—10 collisions.

In the following we will consider the particular case of a
single circular scatterer per unit cell with radiuR,
0<R<a/2. Clearly, the time between collisions is un-
bounded.(v ,(t)v4(0)) decays as 1/ (X4(t)%) grows as

tint, and strictly s_peak.m@_w=oo [8,9]. This infinity is the ersist. On the other hand, &—x, the trajectories are
result of an overidealization. In real systems scattering b)P

impurities may be rare, but is unavoidable. The most perfec‘?'ther closed circles or skip along a single scatteresette

antidot samples have an impurity mean free path of the ordec?rb'ts)' The dynamics is then integrable. Thus for intermedi-

A . . S ate values we expect a mixed phase space. Its structure will
of 10° nm. In the Sinai billiard impurity scattering is intro- . : i
. L . be discussed in detail in Sec. Il. We only remark that for the
duced simply by randomizing, at the current position, the . - . e e :
velocity angle at Poisson distributed random times with square lattice we will find orbits drifting to infinity. But in
y ang . A contrast to the case=0, for a certairB range these orbits
mean spacing-. v(t) is then no longer deterministic, b(®)

remains valid provided) is understood as double average form a set of positive measuré) is then ill defined. Also
: . P S o . 9 'restricting() to some part of the phase space is radtehoc
i.e., with respect to the initial conditions and the impurity

scattering at random times. The diffusion matrix dependsAS argued above and forteriori for B#0, the correct

. .~ physical setting is to introduce scattering by impurities. The
now on 7. Clearly, if 7—0 any trace of the deterministic o . . ; .
S s derivation of(4) remains valid and yields a well-definetl
dynamics is washed out and ,z(7)=(v*)7d,5. On the ; .
other hand, for the square latticB(7)— as r—oo. We depending onr. As —0 the conductance is completely
argue here that there is a meaningfubindow (which has to determined by impurity scattering. The problem of interest

: ! ; .. and to be studied in Sec. lll is the behavior @fr) for
be det(_ermlne)j whereD is do_m_mated by 'ghe dgtermlnlstlc reasonably large values of In particular we will (ha)lve to
dynamics, yet the long cqlhsmnless trajectories are SUP%ind out which piece of the deterministic dynamics domi-
pressed by impurity scattering. nateso (1)
Atier these prel|m|n.ar|es we turn to th? prpblem of Inter-— our baper we study only the square lattice with disk
est, namelyB+0 . Antidot probes are maintained at Kelvin

temperatures. Therefore the electrons have a velocity distrﬁcattererséanudots. The parameters are thét) the external

bution uniform over the diskv||v|<v¢} with vr the Fermi magneyc f'elds’ equwalently' the g'yratlon ra'dlugla, (2)
: : ) the antidot radiu®/a, (3) the impurity scattering mean free
velocity. Following standard linear response the magneto- = ! X -
. > pathl/a=|v|r/a, equivalently the mean free time =1 for
conductance is obtained as - . .
|[v|=1. All three parameters are measured in units of the
e?m* o lattice spacinga, which we set equal to 1. Typical experi-
Uaﬁz_zvﬁf dt(v,(H)v4(0)). (4) mental values ardR/a~1/6, r./a~2, andl/a=~10. The
mh 0 transport coefficients of interest are the magnetoconductance

) . , and Hall conductance1,,01, as given by(4) and the cor-
Here—e is the chargem™ the effective mass of the electron, yegponding resistances ().

6

and correspondingly fop,,,p»1. Usually p,; is called the
magnetoresistance ampgd, the Hall resistance.

For very smallB the trajectories between collisions are
almost straight and one may use perturbation techniques de-
veloped in[10] with the result that the properties Bt=0

and, as befqreg ) the microcanonical average withl| =1 Antidots have some intrinsic roughness from the litho-
By stationarity(v ,(t)v g(0)) = (v s(—t)v4(0)). Thus graphic preparation process. We can model this through dif-
) fuse scattering: when the particle hits an antidot it is specu-
D .= mh } (G0t 0g,) 5) larly reflected with probability p and diffusely with
- @mryg 20 TR probability 1—p, O<p=<1. This means that relative to the

normal the outgoing anglé is chosen at random according
In particular, the diagonal matrix elemends,, are deter- to the distribution co8d6/2,— =/2< 6< /2, which just en-
mined by the mean square displacement of the diffusing paisures that the microcanonical measweis left invariant.
ticle. Unfortunately, the off-diagonal elements @fcannot  The influence of diffuse scattering on the transport properties
be related to diffusion in a position which complicates awill be discussed in Sec. V.
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FIG. 1. Various orbits foR=0.15

Il. DYNAMIC STRUCTURE OF THE PHASE SPACE
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FIG. 3. Phase space volume of all circle orbits for

R=0.1, 0.167, 0.25, and 0.35 from top to bottom.

the first few boundaries in parameter space, which limit re-
gions where 0O-circles cease to exist, 1-circles start and cease
to exist, etc. These boundaries are determined by purely geo-
metric conditions. For large. they form a fairly compli-
cated pattern, which is responsible for the rugged boundary
between the mixed and fully chaotic “phase,” where we
simply assume that the absence of circle orbits is equivalent
to fully chaotic dynamics. This is not evident and there could
be other regular orbits. However, if they exist at all, they

In this section we study the deterministic dynamics settingNtSt have minute phase space volume.
7=, By definition the phase spaderefers to a single unit ) X R T
cell. Its various components are, however, more easily chaf0lume of all circle orbits, which is displayed in Fig. 3.

acterized in the periodically repeated scheme of Fig. 1. Fo

r.<3—R the billiard is completely integrable. Orbits are ei-

ther circles around zero, circles around a single scatterer, 6t°

rosettes skipping along a single scatterer; cf. Fig. 1. zor
sufficiently large the billiard is fully chaotic. For intermedi-
ate values ofr . the chaotic sed’. coexists with a regular
piecel'o=T"\T, for which by definition the Lyapunov ex-

ponent vanished’. seems to consist of one single compo-

nent with the exception of a set of tiny measure. Figure
gives the “phase” diagram in parameter space, indicatin
where the system is integrable, mixed, and fully chaotic.

I’y splits into several dynamically distinct components.

First of all, there are collision-free circular orbits; cf. Fig. 1.

They encircle either zero, one, or several scatterers. Ther
fore the latter are also called pinned orbits. In Fig. 2 we plot
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FIG. 2. Phase diagram in parameter spg¢€) is completely
integrable, (\\) is fully chaotic, and the remainder mixed dynam-
ics. (---) are the boundaries of the 0-, 1-, 2-, and 4-circles.
denotes the location of peaks fn, for various values oR; com-

pare Fig. 8.

A dynamically important information is the phase space

flearly the 0-, 1-, 2-, and 4-circles domindfer suitable

R), but also orbits encircling 3, 7, 9, 10, 14, 16, 21, ...

atterers have a distinguishable weight.

Circular orbits are marginally stable. There is a further set

of marginally stable orbits, namely, the rosette orbits; cf. Fig.

1. Their angle of incidence does not change under successive

collisions. Thus a typical rosette orbit is quasiperiodic and

not closed. Because of this precession there cannot be a set
f positive measure of rosette orbits that encircle other scat-

gIerers. Rosette orbits cease to existrfpor 0.5. However, for
smallr . rosette orbits make up a substantial parf'gf We

note that in phase space the boundaries of rosette and circle
components are piecewise smooth, because they are deter-

gnined geometrically.

Figure 4 is a Poincarplot, where we map from outgoing

to outgoing collision. We use the angle on the surface of the

scattererse[0,27], and the angle of the velocity relative to

the normald, |6|<m/2, as coordinates. For=0.4 we rec-
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FIG. 4. Poincaresections forr.=0.4, R=0.15 (left) and
r.=0.51, R=0.25 (right).
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ognize the rosette orbits with=—0.057. Rosettelike seg- T =mmat mnnat et e s M o o e
ments of chaotic trajectories appear as lines with constant 1E

0 in the chaotic sea, whereas the circle orbits are hidden for 10-' | . 4 F + 10+
our choice of section. Also several elliptic islands of the o o3 ;
familiar structure are clearly visible. These are hard to clas- 10% g -~ \\— £ ntog 107
sify systematically and we proceed via case study. An obvi- Eo 1r ]

ous example is Fig. Itop) [11], which corresponds to a 107 F 3F 3107
fixed point of the return map. From a linear stability analysis, L0t Lo N N\ Lo

this fixed point is stable provided

—
—

10 102 103

n n

10 102 103 10¢

<1. (7

2r
‘1— —Ccos arcsi{xi) . . : )
R 21, FIG. 5. (a) Probability ofn successive (1,0) jumps for a chaotic
trajectory, R=0.25 (upper curvg, R=0.28 (middle curve, and
For example, forR=0.25 the fixed point is stable for R=0.36(lowest dot$, r.=0.51.(b) probability of collidingn times
0.5<r.<0.56. At the lower end the fixed point becomes with the same scatterer for a chaotic trajectoRs 0.1 (lower
marginally stable and the elliptic island disappears. At thecurve andR=0.05 (upper curvg r.=0.65.

upper end there is a pitchfork bifurcation to a stable period-2

orbit, which corresponds to a sequence of a long, a short, gnase space has a sticky boundary if chaotic orbits close to

long, etc. “jumps” from scatterer to scatterer. Al=0.57 5 houndary stick around for a long time. F#0 we also

the period-2 orbit becomes unstable and the island ceases é?(pect sticky orbits. Of course, at this stage it is not clear

exist. The ph_ase space vplume correpondlr_lg to thg island [Whether this phenomenon will be of any importance to the
small, reaching a maximum of 0.008 in the interval

0.505<r ,<0.525. magnetotransport. . .

The orbits shown in Fig. Xtop) drift with a constant For drifting orbits we expect a scenarlo.th.at'ls wel! un-
velocity to infinity. For this reason we call them “drifting 9erstood for smooth potential$2-14. An elliptic island is
orbits.” Encouraged by our example we look for other drift- surrounded by a self-similar hierarchy o_f can_torl. The motion
ing orbits constructed according to the same rule. We labgf@n be modeled as a Markov process jumping from level to
such fixed points by their Miller index, (1,0) in our example. I_evel in that hierarchy. _The waiting time increases exponen-
There is a (3,0) island existing only fé&<<0.11 with even tially with the level, which leads then to slow motion and a
smaller phase space volume than the (1,0) island. It shoul@ower law decay of correlations. When applying this sce-
be noted that the linear stability is only a necessary condinario to one island of drifting orbits, one has to recall that the
tion. Given a stable fixed point, the orbit may interfere with Self-similar structure may be cut off at a certain level by
the row of scatterers in parallel and thus in fact not exist ageometric constraints. We investigate the (1,0) drifting or-
all, as for the (1,1) or the (2,0) island. A further example isbits atr.=0.51. We determine the probability of the sticky
Fig. 1 (diagona). This a stable period-2 orbit of the Poincare chaotic trajectories that follow the drifting orbits overcol-
map, which alternates between (1,0) and (0,1). Fotisions, i.e., for the (1,0) island “jump’h times by the lat-
r.=0.51 (which is favored by the stability conditipnrwe  tice vector (1,0). FoR=0.25 and 0.257 we seem to get an
determined numerically the measure of all drifting orbits.algebraic decay approximately as Ibr long times. On the
They come into existence &=0.1, reach their maximal other hand, folR=0.33 we have a quick drop and a loga-
phase space fraction of 0.015R¢=0.3, and then disappear rithmic plot confirms exponential decay. We interpret this
atR=0.38. We conclude that drifting orbits are dynamically behavior as coming from a geometric constraint.
distinct. However, they exist only in a fairly small window  Circular and rosette orbits are not surrounded by chains of
and even then have only small measure. Still, if we wouldislands and cantori, because they are geometrically con-
stick to the fully deterministic dynamics, according @  strained by a scatterer. Periodic rosette orbits encircling other
they would eventually dominate the magnetotransport. scatterers form a set of measure zero. Yet sticky chaotic

In the Poincaresection, one also finds elliptic islands that trajectories can follow the rosette over many collisigok
do not correspond to drifting orbits. An example is the closedrig. 1) if we choose their angle of incidence just below that
orbit in Fig. 1 (top left), a period-4 fixed point of the return of the rosette. Ifin collisions are followed, the phase space
map from the small island in Fig. 4 far,=0.4. Also at volume scales as i1/ To test this prediction we measured
r.=0.6, R=0.25 there is a stable periodic orbit that skipsthe probability that an orbit collides times with the same
along nine scatterers before returning to its original phasescatterer. Figure 5 confirms well our picture. For circle orbits
Each of these regular islands exists only for a small paramthis effect has smaller phase space volume and we expect a
eter range and again their phase space volume is minute. faster decay proportional tori. Circle orbits seem to be

For the billiard aB=0 the trajectories drifting straight to *“less sticky” than rosettes.
infinity form a set of measure zero. Still chaotic trajectories The degree of mixing of the chaotic compondnt of
follow an exceptional trajectory for a long time leading to phase space is quantitatively characterized by the Lyapunov
the nonintegrable decay ¢b ,(t)v ;(0)). For lack of a bet-  exponent, which we plot in Fig. 6 for the continuous time
ter name we call such orbits “sticky.” A sticky orbit belongs dynamics. In the fully chaotic “phase” we see a weak,
to the chaotic phase space but follows a nearby regular orbihonotonic increase. If a regular component is coexisting, we
for a long time. Once a sticky orbit escapes the regulahave pronounced oscillations. Somewhat to our surprise the
neighborhood it is unlikely to return. A regular piece of maxima are well correlated to the occurrence of circle orbits.
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In fact the= is a little bit delicate. Presumably, because of
sticky orbits, C{?)(t) has a slow decay, similarly as in the
known caseB=0. Our numerical procedure causes an ef-
fective numerical cutoff in and we do not see contributions
from such a slow decay. Thus we expect that over the range
5<7< 17, (1) is essentiallyr independent and determined
by the chaotic dynamics. Fat> 1 ,,, the slow decay would
become significantr ,,,, Seems to be so large that it cannot
be accessed by our numerics. Note that for largéhere are
no collisionless trajectories running to infinity which guaran-
P ; P ; ; tees a finite horizon and a well-defined transport even with-
pliiin i Lo bl v b b out impurity scattering.
r For the drifting orbitsC{®) (t) = ((v,)q)? ast—o, where

(v 4)q is the average drift velocity along theaxis. Together

FIG. 6. Lyapunov exponent fdR=0.1 (---), 0.167 (-), and  with (9) this yields the contribution

0.25 (——). Vertical lines indicate the location of maximal phase
space volume of circle orbits labeled the number of encircled scat- /Jvd(<va>d)27- 12
terers.

1.5

3 .

IRV

N
b4
© B
N

to (7). uq is always small. Even if we adjugiy to its
. IMPURITY SCATTERING maximum we still have to make=100 in order to obtain a
) ) . . significant contribution. Therefore in the following we ne-
As argued in the Introduction, the physically meaningful glect the contribution(12). Still, provided uq#0, asr is

definition of the magnetotransport is given by increasedg(7) will be dominated by(12) rather than by a
) possibly slow decay ifill).
. fﬁdtC;E(t)- ® The dominant contribution to the third pie@{)(t) is
0 from circle orbits, oscillating with the cyclotron frequency

we=1/r;. Thus
To simplify we normalized here the prefactor to one and, for
the purpose of this section only, we indicate explicitly the  eatr~(F) 5y — D
7 dependenceC/ 5(t) = (v ,(t)v 4(0)) is the (stationary ve- fo dte "'Cp() =04, (13
locity autocorrelation including impurity scattering with
mean free time. The deterministic correlation is denoted by Which by definition is the Drude magnetoconductance
Caﬁ(t)lzlimHoo .;ﬁ(t). In antidot probesr ranges from 5 o r?
to 100 in our units. om0l
If at each impurity scattering we would not only random- 1+ (we) 1+ (we7)
ize the velocity but also the position over the current unit . )
cell, then the so obtained velocity autocorrelation equals For the diagonal matrix elemente;<S;; and thus
e*“TCaﬁ(t) becausgv)=0 immediately after the first im-

-
(14

purity scattering. For the more physical impurity scattering T11= MeSny (19
adopted here we still expect while for the Hall conductance we obtain
Cop(t)=e"""Cpp() ©) 015= peSio+ (1 po) o5, (16)

to be a reasonable approximation over the parameter range bfgure 7 shows a comparison between numerically deter-
interest[15,16], however, still conditional to a numerical mined values ofr,z(7) for two different values forr and
check. As explained in Sec. Il the phase space decompos#e approximation$l5), (16). The accordance is indeed very
asI' .UT'yUT,, I'y the drifting orbits,I"; the circle, rosette, good, even for fairly small values of. We conclude that
and nondrifting regular orbits, with probability. , pq,utr, magnetotransport is dominated by the chaotic dynamics over
respectively(some of which could vanishThen obviously  the whole physically accessible ranges5<100. In the
following section we set-=10 with the understanding that
Cop() = cCA() + 1aClP) + 1, CLAL), (100  except for finer details we observe indeed the deterministic
dynamics as given througiib), (16).
where C{)(t) is the deterministic velocity autocorrelation
over the normalized component ofl'. We combine now IV. MAGNETOTRANSPORT
(10) and the approximatio®) to discusso(7).
If 7 is sufficiently large, so tha ™" decays more slowly
thanC{)(t), then

In Fig. 8 we show the magnetoresistaneg, as deter-
mined by (6) and (8) with 7=10, as a function of. for
various values oR. Such pronounced peaks have also been
observed experimentally¢,17—19 and in numerical simula-

dte 7Ot EJ dtCO(t)=S,,. 11 tions with a smooth scatterer potentjab,16.
fo (V) 0 ap(t A (a1 A first guess might be that,; reflects the variation in the
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Te small shift in the extremum is actually a fairly frequent prop-

erty for botho; andoq,. At the 4-peako,; has a structure-
FIG. 7. Conductance under the full dynamics including impurity |ess jncrease. For the data we analyzed this is an exception.
scattering withr=40 (~ —), 7=10(:--), and in the approxima- \ye conclude that at least roughly there is the expected cor-
tion of Egs.(15) and(16) (—), R=0.167. relation, although the minima iy, and the maxima in
o1, are much less pronounced than the peaks;in

chaotic phase space volume . However, using15), (16) It has been argueflL5] that the peaks iy, are due to

together with the numerically determingd from Fig. 3 we sticky chaotic trajectories following circle orbits. This

find that the resulting variation ip4; is a factor 4-10, in , L :
would, however, result in a minimum, rather than a maxi-
some cases even 100, too small. Thus we must observe

changesS, ,, which is the integrated velocity autocorrela- U™ Of 711 and such an explanation is not applicable to our
Nangess,s, Wi g. y model. Sticky behavior of chaotic trajectories is not dis-
tion of the chaotic phase space; (f1).

To systematize we indicate the location of the peaks | r;unctly correlated with circle orbits, but it is also affected by

p11 by boxes in Fig. 2. They fill all of the mixed phase. In the fosettes, cf. Sec. Il. Since the structure diy is so well

integrable phase one has Drude behavior, in the chaotilclznked with the occurrence ofi-circle orbits, we tried to

phase the conductances approach their valueB f00: i.c., make a more quantitative connection wi);. The various

) . . tests were not conclusive and, in our opinion, it is not justi-
011 INCréases and-, decreas_es W'thc' The location of the fied to make a particular class of dynamical trajectories re-
peaks inpq,; changes very little withR. Each column of sponsible for the peaks i
peaks occurs at those where the orbits encircling a certain P P P11
fixed number of antidots have maximal phase space volume.

Peaks can be labeled with a definitecircle. This works V. DIFFUSE SCATTERING AT EDGES
even when the associated phase space volume is very small,
such as, e.g., the 7-circle peak.

In view of (6) we would expect that a peak ip;; is
correlated with either a maximum ia,; (see Fig. 9 or a
minimum in o 4,, or both. To test which we show in Fig. 10
an enlargement foR=0.16. o1, has indeed a minimum at
n=1-, 2-, and 4- peaksr;; has a maximum at the 1-peak,
but the maximum at the 2-peak is somewhat shifted. Thi

The edges of real antidots are not completely smooth. The
microscopic roughness causes trajectories to be scattered dif-
fusely rather than specularly. In quantum wires, significant
modifications of the magnetoresistance are known to be
caused by the diffuse scattering at ed#®g. It can be mod-

eled by the single parametprassuming that the trajectory
Sgets scattered diffusely with probabilify upon hitting the
scatterer. The distribution of the angle of reflectrelative
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6 r “l 'l”\l\/ ~a T r _: 0.4
Pt : by 22NN ~ ] 4~ ] 911
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FIG. 8. Magnetoresistance f&8=0.1 (---), 0.167 (—), and FIG. 10. Magnetoresistangg;; (—) and magnetoconductance
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tance modulations remain nearly unaffected by the diffuse

3 0.25 scattering, and are only smoothed out insignificantly. We can
E 0.2 conclude that drifting orbits are of no importance for the
4 peak structure itpq;.
-4 0.15
Ty ] T
30! VI. CONCLUSIONS
40.05 _ _ : : - .
A7 | ‘) | e We investigated the two-dimensional Sinai billiard with
Y circular scatterergantidot$ on a square lattice and with a
re T ‘ uniform external magnetic field. Our numerical studies are

considerably more extensive and more systematic than pre-
FIG. 11. Conductance with—) and without ( - -) diffuse scat-  vious work. Of course, we exploit here that the deterministic
tering for p=0.5, R=0.167 (left) andR=0.25(right), r=40. dynamics is computationally fast. Magnetotransport is stud-
ied strictly within linear response theory. Therenis exter-
to the normal equals c6d6/2, |6|<m/2, as required by the nal electric field acting on the particle. For example, orbits
invariance under the deterministic dynamics. Experimentallyencircling either zerqunpinned or one scatterefpinned
p varies between 0.05 and 0.5 depending on the technigumake exactly the same contribution to the magnetotransport,
used for creating the potential wells. Here we will use thebecause they appear on the same footing in the velocity au-
diffuse scattering mechanism to examine the dynamical oritocorrelation. Physically, magnetotransport is a well-posed
gin of some of the peaks ia,, andp,, [21]. problem only if one includes impurity scatterifigrith mean
Circle orbits do not hit a scatterer and are therefore nofree timer).
affected by diffuse scattering. Sticky chaotic trajectories fol- Already the very first papers on the subject tried to ex-
lowing either drifting orbits or circle and rosette orbits are plain the peaks in the magnetoresistance through chaos in the
interrupted by diffuse scattering. The change in transport isglassical dynamics. This hypothesis has never been tested
however, quite different in both cases: The contribution ofquantitatively before. Here we demonstrate that there is a
drifting segments to the conductance is proportional to theireasonably wider window, where on one side the chaotic
length. Since the window in the angleensuring a drifting component of the deterministic dynamics domintdsEqgs.
orbit is generally very small, the length of drifting segments(15), (16) together with Fig. T, and on the other hand drift-
in chaotic orbits will be reduced upon diffuse reflection. As aing and sticky orbits are suppressed. We also include diffuse
consequence strong diffuse scattering will suppress thosgcattering from antidots, which allows one to access the con-
features ino,, andp,, that are due to drifting orbits. On the tribution of drifting orbits to the magnetotransport.
other hand for trajectories following circle and rosette orbits We confirm the pronounced peaks in the resistance as
not the length of the segments but only the total fraction oflinked to pinned circle orbits. In fact the peaks cover that
such trajectories, e.g., the return probability to a scatterepart of parameter space where the classical dynamics has a
after one collision, is important. This is not changed by dif-mixed phase space. On the other hand, it does not seem to be
fuse scattering and thus the features due to circle and roset®ssible to make one definite class of trajectories responsible
orbits will hardly be affected. for the resistance peaks. We exclude, however, that the drift-
To distinguish diffuse scattering from impurity scattering ing and circle orbits make any significant contribution to the
we have to choose a mean free timenuch larger than the magnetotransport. Of course, this does not exclude possible
average time between collisions with scatterers. Figure lindirect contributions through nearby sticky orbits.
compareso; for the dynamics including diffuse reflection
with impurity scattering. The curves are very similar and

most peaks remain nearly unchanged. Diffuse scattering es- APPENDIX: NUMERICS

sentially corresponds to a reduction i Only the peak at Numerically we solve the deterministic dynamics by map-
rc=0.55 forR=0.25, where we had found the largest islandping from collision to collision. Due to the exponential sepa-
of drifting orbits, is strongly suppressed. ration of close trajectories according to the Lyapunov expo-

In Fig. 12 we plotp,, for both cases. The magnetoresis- nent(cf. Fig. 6), trajectories can be followed only for 10—-20
collisions, limited by the error of initial conditions in double
precision. For details of the numerical determination of

tions over the chaotic phase spdcgare obtained from an
4 average over findependent segments of one long ergodic

6 7 10 Lyapunov exponents we refer [@2]. Conductances are cal-
5 ] culated by time integrating the velocity autocorrelation
P B 8 0 (va(t)vg(0)), diagonal conductances additionally by a lin-
o4 16 ear fit of the mean square displaceméxy(t)?). Correla-
3
2

UL EARRERARRERRERN RARE:

I

] V l“ | JE tr_ajeptory. \_/el_ocity autocorrelations typic_ally o_lecay vv_ith 0s-
05 1 15 o5 1 15 ° cillations within a few(5—-10 mean collision times, giving
r, r, an almost perfect linear growth of the mean square displace-
ment. However, for smalR<0.1 andr.<1, in the case of
FIG. 12. Resistance with—) and without ( - -) diffuse scatter- ~ substantial rosette contributions, a slower algebraic decay is
ing for p=0.5, R=0.167(left) andR=0.25 (right), 7=40 . visible, requiring segments of length up to 50 collisions. Nu-

—
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merical errors for the integration are about 1-2 %, maximaktongruential method. Again correlations are obtained as an
5%, as caused by the statistical fluctuations for largEr-  average over T0segments from one trajectory covering all
rors in the least square fit are typically one order of magni-of the phase space. For a mostly chaotic phase space corre-
tude smaller. Both values far,, determined either from lations behave as in the deterministic dynamics. In the case
time integration or from linear fit agree within their errors. of substantial oscillating contributions by circle orbits the
For impurity scattering we use the deterministic dynamicsvelocity autocorrelations have to be determined up to a few
between the randomly distributed scattering events. Scattemean free times, e.g.,t~37. The data in Figs. 7-12 con-
ing times and angles are taken from a random number gersist of discrete points wittAr,=0.025. All computations
erator of the NAG Fortran Library based on a multiplicative were carried through on a hp workstation 715/64.
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